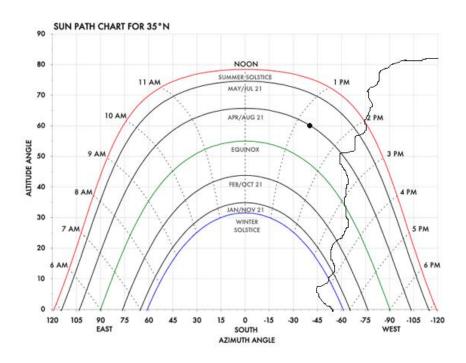
ET142 Day One

Name							

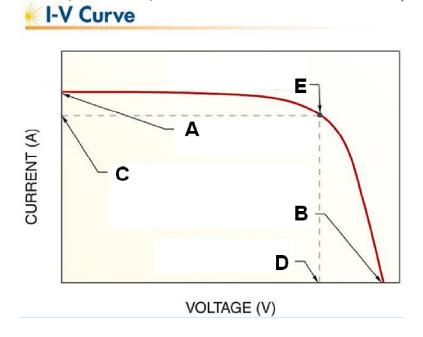
Matching

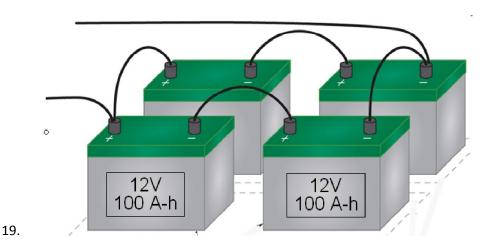
	a.	Insolation	i.	Galvanic corrosion	
	b.	Irradiance	j.	Islanding	
	c.	Irradiation	k.	Ground fault circuit interrupte	er
	d.	Specific Gravity	١.	Equinox	
	e.	H Bridge	m.	Electrolyte	
	f.	Soltice	n.	Allowable depth of discharge	
	g.	Equalization	0.	Ground Fault	
	h.	Discharge rate	p.	Push Pull	
1	. The	e average battery bank total operating time	ove	r the period of autonomy.	
2	. The	e solar energy that reaches the earth's surfa	ace o	ver a 24 hour period.	
3	. The	e intensity of solar power over a period of t	ime		
4		desirable condition where an interactive in	verte	r continues to osupply power t	to the utility grid during a
		lity outage.			
5	. The	e earth's orbital position whtne the solar de	clina	tion is at its maximum or minir	mum
6	. The	e undesirable condition of current flowing t	hrou	gh the grounding conductor.	
7	. A c	controlled overcharge for a few hours			
8	. The	e ratio of the density of a substance to the o	densi	ty of water.	
9		electrochemical process that causes electri croding one of the materials.	cal c	urrent to flow between two dis	ssimilar metals, eventually
10		verter circuit type that switches DC input int vices.	o sq	uare wave AC output by using t	wo pairs of switching
Problem					
11		power converts AC power to	DC	power and	converts DC power to
12	. Ph	ase unbalance when three-phase power line	es ar	e more or less than	out of phase.


14. A fully charged,12V, 100A-h battery is supplying power to a 60W light bulb. How long can the battery keep supplying power before reaching a depth of discharge of 50%?

Inverse Square Law to calculate the irradiance at Planet B

13. Planet A is 2AU from the sun and Planet B is 6AU from the sun. The irradiance at Planet A is 300W/m2. Use the


- 15. At approximately what time in the afternoon will the sun be shaded by the obstruction on October 21? (Use the attached sun path chart on the next page)
- 16. An electric space heater draws 1550 watts. If the heater is run continuously for 3 weeks, and your electricity rate is \$0.175/kWh, how much does it cost to run the heater?


17.

What does the the dot show in the sun path chart above?

18. Correctly label all the points on the IV curve:

What is the output voltage and output current of the battery configuration above? Assume all batteries have the same voltage and capacity.

20. You wish to size a PV array using the following parameters:

Average daily consumption = 28.0kWh(AC)/day Average peak sun hours = 5.6h/day

Derating Factors	Input Values
PV module nameplate DC rating	95.0%
Tilt Factor / Orientation Adjusatment	90.0%
Inverter	95.0%
Mismatch	99.0%
Diodes and connections	99.5%
DC wiring	99.0%
AC wiring	99.0%
Soiling	97.5%
System availabilty	98.0%
Shading	97.5%
Sun-tracking	97.0%
Age	100.0%
Overall DC to AC derate factor	???

- a) What is the **nominal AC system** size required to generate 100% of the averge daily consumption? (ignore derating factors)
- b) What is the overall derating factor using the table above?
- c) What is the required **installed PV Array DC system** to generate 70% of the average daily consumption using the calculated overall derating factor?