

Lesson Plan

- NABCEP Practice Exam #2 Next week
- Cont. NABCEP Learning Objectives:
 PV System Sizing Principles

Calculating Module Efficiency

- Efficiency is around 14%. (How to check answer)
- Our modules are rated at 1000W/m2
- Formula: $\frac{W / \text{sq meters}}{1000W/\text{m2}} = \% \text{ Eff.}$

Convert modules dimensions to meters

1 meter = 3.28084 ft

1 foot = 0.3048 m

1 meter = 39.37008 in

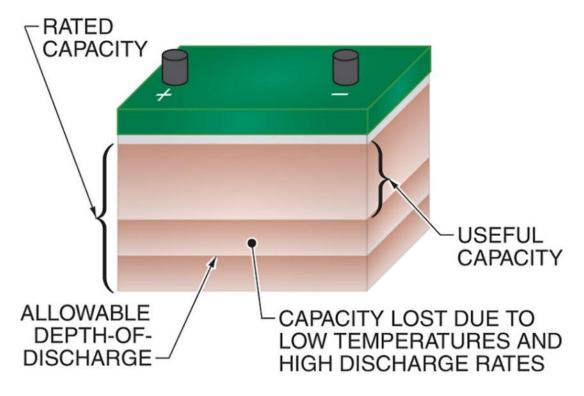
1 inch = 0.0254 m

Example Problem:

1 module is 3 ft x 5 ft = 15 sq. ft.

1 module is $0.9144 \text{ m} \times 1.524 \text{ m} = 1.394 \text{ sq m}$

200 W / 1.394 sq m = 143.47 W per sq m

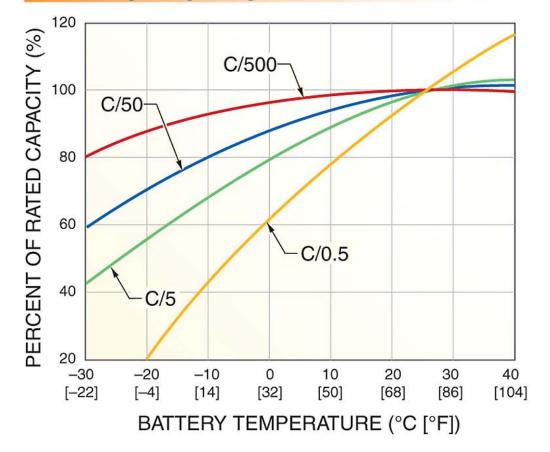

and then divide 143.47 w per m sq / 1000 w per m sq = 0.14347 or 14.347 % Efficient

 The batterybank sizing worksheet uses information from the load analysis to determine the required size of the battery bank.

Battery-Bank Sizing

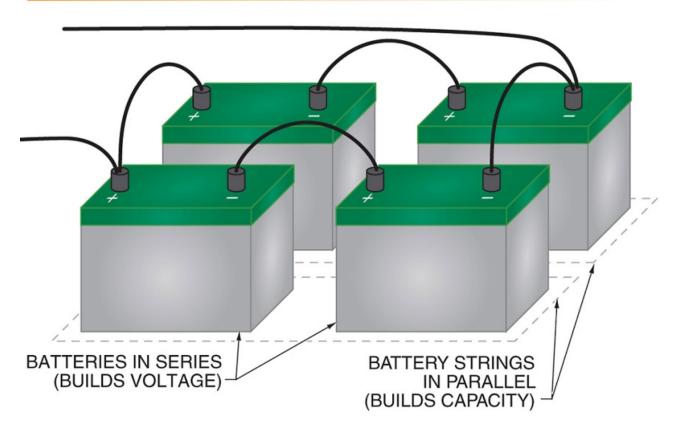
BATTERY-BANK SIZING	
Average Daily DC Energy Consumption for Critical Design Month DC System Voltage Autonomy Required Battery-Bank Output	Wh/day VDC days A-h
Allowable Depth-of-Discharge Weighted Operating Time Discharge Rate Minimum Expected Operating Temperature Temperature/Discharge Rate Derating Factor Battery-Bank Rated Capacity	hrs hrs °C A-h
Selected Battery Nominal Voltage Selected Battery Rated Capacity	VDC A-h
Number of Batteries in Series Number of Battery Strings in Parallel Total Number of Batteries	
Actual Battery-Bank Rated Capacity	A-h
Load Fraction Average Daily Depth-of-Discharge	

Battery-Bank Capacity



Due to the allowable depth-ofdischarge, low temperatures, and high discharge rates, the amount of useful output in a battery bank is less than the rated capacity.

The amount of useful output from a battery bank depends partly on the operating temperature and discharge rate. These factors may have different effects for different

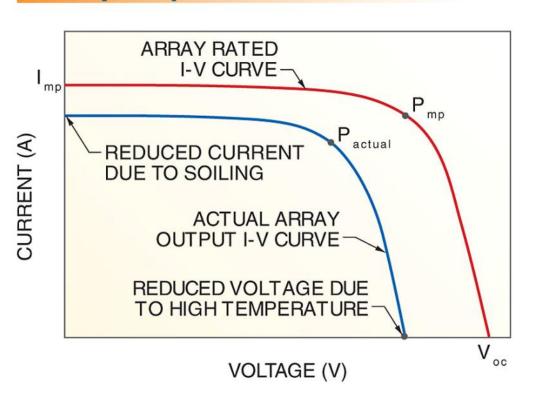

batteries.

Battery Capacity Loss

Batteries are configured in series and parallel to match the battery-bank rated capacity needed to produce the required output.

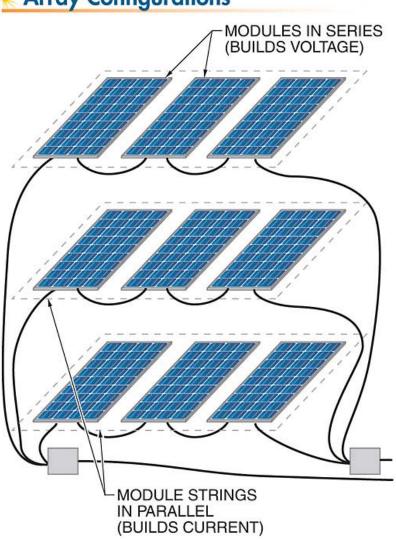
Battery-Bank Configurations

• The array sizing worksheet uses insolation data and load requirements to size the


array.

Array Sizing

ARRAY SIZING


Average Daily DC Energy Consumption for Critical Design Month		Wh/day
DC System Voltage		VDC
Critical Design Month Insolation		PSH/day
Battery Charging Efficiency		
Required Array Maximum Power Current		A
Soiling Factor		
Rated Array Maximum Power Current	N	Α
Temperature Coefficient for Voltage		/°C
Maximum Expected Module Temperature		°c
Rating Reference Temperature		°C
Rated Array Maximum Power Voltage		VDC
Module Rated Maximum Power Current		A
Module Rated Maximum Power Voltage		VDC
Module Rated Maximum Power		w
		1
Number of Modules in Series		
Number of Module Strings in Parallel		
Total Number of Modules		
Actual Array Rated Capacity		w

Array Output Loss

 Actual array output is often less than rated output due to soiling and high temperatures.

Array Configurations

Modules are configured in series and parallel to match the array rated capacity needed to produce the required output.