

bird (not shocked)

The shocking

truth....

A bird on a wire

• A grounded circuit, = man + hot wire

The shocking truth...

 A grounded circuit, man + neutral wire

 Ungrounded circuit, man + hot wire

The shocking truth...

Accidental ground path
 2 men + 2 wires

bird (not shocked)

person (not shocked)

High voltage across source and load person (SHOCKED!)

Ungrounded circuit,2 men + 2 wires

Definitions

GROUNDED

Means connected to the earth

GROUNDING CONDUCTOR

- Conductor that does not normally carry current and is used to connect all exposed, noncurrent-carrying metal surfaces of PV equipment to earth
- Conductor that does not normally carry current and is used to connect the grounded conductor to the grounding electrode (rod) or grounding electrode system--also known as the Grounding Electrode Conductor.

GROUNDED CONDUCTOR

System conductor that normally carries current and is intentionally grounded.

BONDED

Means electrically connected

Requirements

- All PV systems must have an equipment grounding system whether or not one of the current-carrying conductors is grounded
 - Grounding all exposed metal surfaces creates a barrier between the live conductors and the user
 - Since all surfaces are connected together and to earth, the voltage between them and earth even when a fault occurs remains near zero
 - This minimizes the shock potential and is a requirement for any PV system
- PV systems with open circuit voltages > 50 volts are required to have one conductor grounded
- The size of the equipment grounding wire must be at least as big as the current carrying conductors between the two pieces of equipment being connected.
 - It can have a current-carrying capacity (ampacity) no less than the ampacity of the overcurrent device protecting the circuit.

Requirements cont.

- The equipment grounding conductors must at some point be connected directly to the grounding electrode
 - Grounding electrode is 5/8" metal rod driven at least 8 feet into the earth
 - Grounding electrode conductor should be the same size as the largest equipment grounding conductor in the system
- For grounded systems, the grounded conductor must also be connected to the grounding electrode
 - Grounding electrode conductor must be as large as the largest currentcarrying conductor in the system
 - Should be attached to the end of the largest negative conductor nearest the PV array
 - There must be only one connection between the negative currentcarrying conductor and the grounding electrode
 - There can be no splices in the grounding electrode conductor

Requirements

- NEC 250.122
 - Copper, aluminum, or copper-clad aluminum equipment grounding conductors fo the wire type shall not be smaller than shown in Table 250.122
 - But in no case shall they be required to be larger than the circuit conductors supplying the equipment.

Equipment-Grounding Conductor Size

Overcurrent Device Size (Amps)	Conductor Size (AWG)
15	14
20	12
30	10
40	10
60	10
100	8
200	6
300	4
400	3
500	2

 There are two acceptable methods of grounding both the AC and DC sides of a PV system.

9

Array Ground-Fault Protection with Inverter Fuse

Ground-Fault Circuit Interrupter

A ground-fault circuit interrupter (GFCI) senses differences between the current in the grounded and ungrounded conductors, indicating a ground fault, and opens the circuit in response.

Definitions

Ground-Fault Current Paths

Example positive conductor faulted to PV module frame

Path of Negative Ground Fault Currents—parallel negative current paths.

All ground-fault currents must flow through the DC bonding connection.

Any time positive or negative ground-fault currents exceed ground-fault fuse/breaker rating, that device opens and ground-fault currents are interrupted.

Final Exam Review

- 50 questions
- Same format as the midterm
- 70% midterm material / 30% rest of class material (see below)
- Open book / open notes
- Topics
 - Electrical Safety
 - Ampacity Calculations (same ten step format as midterm)
 - Voltage Drop Calculation
 - 3 phase power, wiring, inverters used in 3-phase systems
 - Transformers
 - Conduit, types, bending, sizing
 - Grounding concepts, grounding definitions, GFI versus GFCI
 - PV ground requirements, grounding design
 - Site assessment, design parameters, equipment