Class 4

Lesson Plan

- Conductors, PV, and NEC
 - Voltage drop
- Conduit
- Next Week
 - Class project discussion
 - Conductor ampacity and voltage drop review

- Voltage drop is NOT an NEC code issue
 - It is not a safety issue
 - Still important design consideration (\$\$\$\$)
 - Power = I * V, as V drops, P drops
- Ohms Law
 - -V=I*R
 - ΔV = I * R where I = amperage in conductor,
 R = property of the conductor
- Conductor resistance
 - Decreases as conductor size increases
 - Increases as conductor temperature increases

- NEC Chapter 9, Table 8 Conductor properties
 - Direct Current Resistance at 75C
 - Stranded versus solid conductors
 - Copper versus Aluminum
 - Size 18 to 4/0
 - Area, diameter, and Ohm/kFT / Ohm/km

Table 8–1. Conductor Properties, <i>NEC</i> Chapter 9, Table 8									
Conductor Size American Wire Gage	Conductor Resistance Per 1,000 Feet at 75°C	Conductor Diameter Inches	Conductor Area Circular Mils						
14 AWG	3.140 ohms (stranded)	0.073	4,110						
12 AWG	1.980 ohms (stranded)	0.092	6,530						
10 AWG	1.240 ohms (stranded)	0.116	10,380						
8 AWG	0.778 ohms (stranded)	0.146	16,510						
6 AWG	0.491 ohms (stranded)	0.184	26,240						

- Resistance as a function of diameter
 - How does resistance change if diameter is doubled?

- Resistance as a function of temperature
 - How does resistance change if temp = 150C?

Temperature Adjustment, Table 8, Note 2:

```
R for CU = Table R x [1 + (0.00323 \text{ x (Temp}^{\circ}\text{C} - 75^{\circ}))]
R for AL = Table R x [1 + (0.00333 \text{ x (Temp}^{\circ}\text{C} - 75^{\circ}))]
```

- What about Alternating Current Resistance?
 - NEC Chapter 9, Table 9
 - More complex considerations
 - Power factor, and effective impedance
 - DC table is fairly accurate for conductors smaller than 2AWG

- Calculate resistance in conductors
 (Uncoated is used, it does not mean uninsulated)
 - What is the resistance in 200ft of 12AWG copper stranded at 30C?

1.98 Ohm/kFT * 200/1000 = 0.396 Ohm

- What is the resistance of 400ft of 10AWG copper stranded at 100C?
- 1.24 Ohm/kFT * 400/1000 * (1+ 0.00323 * (Temp 75C)) = 0.536 Ohm
 - What is resistance in <u>circuit</u> between junction box and inverter if distance between them is 300ft and we are using 10AWG copper stranded at 50C?

1.24 Ohm/kFT * 600/1000 = 0.744 Ohm

- What is an acceptable voltage drop?
 - No code requirements
 - Typically measured as a percentage of the nominal voltage
 - 5% or greater bad
 - 2% 3% is considered "good: design practice"
 - What is the voltage drop in 200ft of 12AWG copper stranded at 30C if amperage is 4A?
 4A * 0.396 Ohm = 1.58V
 - If circuit voltage is 12V, what is the percent voltage drop?1.58V / 12V = 13.2%
 - If circuit voltage is 48V, what is the percentage drop?1.58V / 48V = 3.3%

- What amperage do we use in PV voltage drop calcs?
 - The higher the amperage, the greater the calculated drop
 - Rule of thumb:
 - Use Peak Power amperage (IMP) for grid-tied PV currents
 - Use ISC for battery charging circuits PV circuits
 - Use max steady state current of the load
 - Use max steady state current for battery to inverter circuits
- What voltage do we use in PV voltage drop calcs?
 - Doesn't matter if we are trying to measure the actual voltage loss
 - Example calculating voltage drop to make sure on/off set point is not reached
 - Use nominal percentage if you are looking for percentage

Example 4 (breakout into groups and try): (RT=Round Trip)

(Distance must be multiplied by 2 unless round trip is stated.)

Determine voltage drop in grid-tied PV source circuit
 (12AWG stranded, 200FT RT, ISC = 5.2A IMP = 4.95, Temp = 40C)

1.98 Ohm/kFT * 200/1000 * 4.95A = 1.96V

Determine voltage drop in battery charging circuit
 (2AWG, 50FT RT, ISC = 41.6A IMP = 39.6A, Temp = 120C)

0.194 Ohm/kFT * 50/1000 * 41.6A*(1 + 0.00323*(120C-75C)) = 0.46V

• Is this acceptable for a 12V system with 2%-3% voltage drop?

0.46V / 12V = .03833 * 100 = 3.8%, NO

- Conduit comes in various configuration
 - EMT Electrical Metallic Tubing
 - · Thin wall conduit
 - 40% thinner than rigid
 - Lighter, easier to bend, & no threading
 - RMC Rigid Metal Conduit
 - Heavy duty
 - · Requires threading-like plumbing
 - Generally used for service entrance risers.
 - IMC Intermediate Metal Conduit
 - Between RMC and EMT
 - Can be threaded
 - PVC Polyvinylchloride
 - Cheaper alternative
 - High coefficient of thermal expansion
 - FMC Flexible Metal Conduit
 - LFMC Liquidtight Flexible Metal Conduit
 - FMT, LFNMC, ENT

Conduit comes in various sizes

- ½", ¾", 1", 1-¼", 1-½", 2", 2-½", 3", 4"
- For the "same size" conduit- EMT, IMC and RMC may have a different inside area

Per NEC

- Min size = $\frac{1}{2}$ inch
- Permitted usages vary for each type
- Article 358: EMT

Support requirements (RMC, EMT, IMC)

- Securely fastened every 3m (10ft)
- Within 0.9m (3ft) from every junction box, outlet, transition, direction change
- Should follow horizontal and vertical lines, smooth transitions
- No more than 4 quarter bends between pull points

Energy Instructor www.energyinstructor.info

Conduit Discussion

- EMT must be firmly secured to electrical boxes using compression, indenter, or screw set connectors.
 - Compression firmly secures the conduit by utilizing a nut that compresses a tapered metal ring into the conduit.
 - Can be reused several times
 - Indenter Use of a special tool to make an indention (swaging)
 - Set Screw used to connect two runs of conduit together and maintain a smooth inside run.

COMPRESSION

INDENTER

SET SCREW

NEC Chapter 9, Table 1: Percent of Cross Section of Conduit

Number of Conductors	All Conductor Types
1	53
2.	31
Over 2	40

• NEC Chapter 9, Table 4: Cross sectional area of EMT Conduit

Metric Designator	Trade Size	Inte Diar					Vires		Over 2 Wires 40%		1 Wire 53%		60%	
		mm	in.	mm²	in.2	mm ²	in.2	mm ²	in.2	mm ²	in.2	mm²	in.2	
16	1/2	15.8	0.622	196	0.304	61	0.094	78	0.122	104	0.161	118	0.182	
21	3/4	20.9	0.824	343	0.533	106	0.165	137	0.213	182	0.283	206	0.320	
27	1	26.6	1.049	556	0.864	172	0.268	222	0.346	295	0.458	333	0.519	
35	11/4	35.1	1.380	968	1.496	300	0.464	387	0.598	513	0.793	581	0.897	
41	11/2	40.9	1.610	1314	2.036	407	0.631	526	0.814	696	1.079	788	1.221	
53	2	52.5	2.067	2165	3.356	671	1.040	866	1.342	1147	1.778	1299	2.013	
63	21/2	69.4	2.731	3783	5.858	1173	1.816	1513	2.343	2005	3.105	2270	3.515	
78	3	85.2	3.356	5701	8.846	1767	2.742	2280	3.538	3022	4.688	3421	5.307	
91	31/2	97.4	3.834	7451	11.545	2310	3.579	2980	4.618	3949	6.119	4471	6.927	
103	4	110.1	4.334	9521	14.753	2951	4.573	3808	5.901	5046	7.819	5712	8.852	

Article 358 - Electrical Metallic Tubing (EMT)

NEC Chapter 9, Table 5: Dimensions of insulated wires

	Size (AWG	Approxi		Approximate Area		
Туре	or kcmil)	mm	ín.	mm²	in. ²	
THHN,	14	2.819	0.111	6.258	0.0097	
THWN,	12	3.302	0.130	8.581	0.0133	
THWN-2	10	4.166	0.164	13.61	0.0211	
	8	5.486	0.216	23.61	0.0366	
	6	6.452	0.254	32.71	0.050	
	4	8.230	0.324	53.16	0.0824	
	3	8.941	0.352	62.77	0.0973	
	2	9.754	0.384	74.71	0.1158	
	1	11.33	0.446	100.8	0.156	
	1/0	12.34	0.486	119.7	0.185	
	2/0	13.51	0.532	143.4	0.222	
	3/0	14.83	0.584	172.8	0.267	
	4/0	16.31	0.642	208.8	0.323	
	250	18.06	0.711	256.1	0.397	
	300	19.46	0.766	297.3	0.460	

How many 10AWG THWN-2 conductors can be run through ¾ inch EMT?

0.213 / 0.0211 = 10 conductors

- Box offset offset that allows conduit to align with box opening

 Dog log Mistake in bands when loge do not line un 18
- Dog leg Mistake in bends when legs do not line up¹⁸

- Take-up is the length of pipe to remove from desired height to make the a stub
 - 5 inch for ½ inch bender
 - 6 inch for ¾ inch bender
 - 8 inch for 1 inch bender
- Offset chart is used to calculated proper lengths for various bends
 - 30 degree = 2X length
 - 30 degree = $\frac{1}{4}$ X shrink

	22-1/2°			30°		4	5°	60°	
	2"	5-1/4"	3/8"						
	3"	7-3/4"	9/16"	6"	3/4"				
	4"	10-1/2"	3/4"	8"	1"				
Offset Depth Inches	5"	13"	15/16"	10"	1-1/4"	7"	1-7/8"		
	6"	15-1/2"	1-1/8"	12"	1-1/2"	8-1/2"	2-1/4"	7-1/4"	3"
fset D	7"	18-1/4"	1-5/16"	14"	1-3/4"	9-3/4"	2-5/8"	8-3/8"	3-1/2"
5	8"	20-3/4"	1-1/2"	16"	2"	11-1/4"	3"	9-5/8"	4"
	9"	23-1/2"	1-3/4"	18"	2-1/4"	12-1/2"	3-3/8"	10-7/8"	4-1/2"
	10"	26"	1-7/8"	20"	2-1/2"	14"	3-3/4"	12"	5"

19

Conduit Videos

Conduit Bend: 90 degree stub and back to back

Video Link:

http://www.youtube.com/watch?v=Ws1QifXhh4U&feature=player_embedded

Conduit Videos

Conduit Bend: 30 offset

Video Link:

http://www.youtube.com/watch?v=8zY91dJYFRk&feature=player_embedded

Conduit Exercise

Every get a 10ft piece of ½ in EMT

- Bend a 12" stub in
- Bend a 24" back to back from the first stub.
- Cut and file the tube so that you have two 12" back to back stubs

Using remaining piece of ½ in EMT

Bend a 30 degree 5" offset